考研进入冲刺阶段,鉴于今年的数学大纲较往年而言没有变动,所以大家在复习高数时对其重难点的复习有所侧重,下面列出了高数的重难点,希望大家在掌握重难点概念的同时在习题上也加大练习。

  7、无穷级数

  ①掌握级数的基本性质及其级数收敛的必要条件,掌握几何级数与p级数的收敛性;掌握比值审敛法,会用正项级数的比较与根值审敛法。

  ②会用交错级数的莱布尼兹定理,了解收敛和条件收敛的概念及它们的关系。

  ③会求幂级数的和函数以及数项级数的和,掌握幂级数收敛域的求法.

  ④掌握ex、sinx、cosx、ln(1+x),(1+x)α的马克劳林展开式,会用它们将简单函数作间接展开;会将定义在[-L,L]上的函数展开为傅立叶级数,会将定义在上的函数展开为正弦级数和余弦函数。重点是数项级数的概念与性质,正项级数的审敛法,交错级数及其审敛法,收敛与条件收敛的概念。幂级数的收敛半径、收敛区间的求法,将函数展成傅立叶级数。难点是求幂级数的和函数,将函数展成幂级数、傅立叶级数。

  8、常微分方程

  ①了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离方程及一阶线性方程的解法。

  ②会用降阶法解y(n)=f(x),y″=f(x,y),y″=f(y,y’)类的方程;理解线性微分方程解的性质和解的结构。

  ③掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。

  ④会解包含两个未知函数的一阶常系数线性微分方程组。重点是微分方程的概念,变量可分离方程,一阶线性微分方程及二阶的常系数线性微分方程的解法。难点是由实际问题建立微分方程及确定定解条件。

  相关推荐:

   文都第十九届2016'考研万人公益讲座视频回放汇总

   2015年考研准考证打印须知(必看)

   各地考区2015年考研准考证打印入口汇总