在考研数学中,微分方程是一个重要的章节,每年必考,其中的二阶常系数齐次线性微分方程是一个基本的组成部分,它也是求解二阶常系数非齐次线性微分方程的基础,但很多同学对其求解公式不是十分理解,做题时也感到有些困惑,为了帮助大家对其通解公式有更深的理解和更牢固的掌握,下面文都网校 考研数学辅导老师对它们进行一些分析和简捷的证明,供考研的朋友们学习参考。
一、二阶常系数齐次线性微分方程的通解分析




微分方程中最主要的考点是一阶线性微分方程和二阶常系数线性微分方程,大家对它们的各种求解方法和通解公式及特解求法一定要熟练掌握,而三阶微分方程则仅对数一和数二的考生有些要求,但仅限于三阶常系数线性齐次微分方程。关于可降阶的高阶微分方程实际上也仅限于二阶微分方程。另外,对于变量可分离的微分方程和齐次微分方程大家也要掌握其求解方法。文都网校老师衷心地期望各位考生能学好考好、金榜题名。
| *** 热点推荐 *** | |
|
|
| *** 复习必看 *** | |
|
|
【版权声明】
本文版权属本网所有,任何媒体、网站或个人未经本网协议不得转载、链接、转贴或以其他方式复制发表。已经本站协议的媒体、网站,在下载使用时必须注明“稿件来源:文都教育”,违者本站将依法追究责任。

文都考研微信