同学们,本篇文章文都考研为同学们带来的是关于湖南师范大学高等数学2020考试大纲内容,包括考大纲性质、大纲内容要求等内容,相关专业考生请结合考试大纲进行专业课的复习。接下就一起看看具体内容吧。

湖南师范大学研究生入学考试自命 题考试大纲

考试科目代码:[602] 考试科目名称:高等数学

一、考试形式与试卷结构

1)试卷成绩及考试时间:

本试卷满分为150分,考试时间为180分钟。

2)答题方式:闭卷、笔试

3)试卷内容结构

各部分内容分值比重为:

函数与极 限  15%

一元函数的微积分 40%

多元函数微积分 25%

无穷级数 10%

常微分方程 10%

4)题型结构

a: 计算题,6小题,每小题15分,共90分

b: 应用题,2小题,每小题20分,共40分

c: 证明题,1小题,每小题20分,共20分

二、考试内容与考试要求

高等数学

1、函数与极 限

考试内容

(1)函数

函数的概念及表示法;函数的有界性、单调性、周期性和奇偶性;复合函数、反函数、分段函数和隐函数;基本初等函数的性质及其图形,初等函数;简单应用问题的函数关系的建立。

(2)极 限

数列极 限与函数极 限的定义及其性质;函数的左极 限与右极 限;无穷小和无穷大的概念及其关系;无穷小的性质及无穷小的比较;极 限的四则运算,极 限存在的两个准则:单调有界准则和夹逼准则,两个重要极 限。

(3)连续

函数连续的概念;左连续与右连续,函数间断点的类型;连续函数的四则运算法则,复合函数的连续性,反函数的连续性,初等函数的连续性;闭区间上连续函数的性质(有界性定理,值、最小值定理,介值定理)。

考试要求

理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式;了解函数的有界性、单调性、周期性和奇偶性;理解复合函数及分段函数的概念,了解反函数及隐函数的概念;掌握基本初等函数的性质及其图形,了解初等函数的基本概念;理解极 限的概念;理解函数左极 限与右极 限的概念,掌握函数极 限存在与左、右极 限之间的关系;掌握极 限的性质及四则运算法则,掌握极 限存在的两个准则,并会利用它们求极 限,掌握利用两个重要极 限求极 限的方法;理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极 限;理解函数连续性的概念,会判别函数间断点的类型;了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质,并会应用这些性质。

2、一元函数的微积分

考试内容

(1)导数与微分

导数和微分的定义,左导数与右导数,导数的几何意义;函数的可导性、可微性与连续性的关系;导数和微分的四则运算法则,导数和微分的基本公式;复合函数、反函数、隐函数和由参数方程所确定的函数的求导法,高阶导数,一阶微分形式的不变性。

(2)微分中值定理及导数的应用

微分中值定理(罗尔定理,拉格朗日中值定理,柯西中值定理), 洛必达法则,泰勒公式;函数单调性的判别,函数的极值,函数的、最小值;函数图形的凹凸性、拐点及渐近线。

(3)不定积分

原函数和不定积分的概念;不定积分的基本性质,不定积分的基本公式;不定积分换元积分法和分部积分法;有理函数、三角函数的有理式和简单无理函数的积分。

(4)定积分

定积分的概念和基本性质,定积分的几何意义;变上限积分定义的函数及其导数,牛顿-莱布尼茨公式,定积分的换元法和分部积分法;广义积分,定积分的应用。

考试要求

理解导数的概念及其几何意义,理解函数可导性、可微性、连续性之间的关系;会求平面曲线的切线方程和法线方程;熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数、隐函数和由参数方程所确定的函数的导数;了解高阶导数的概念,会求简单函数的高阶导数;了解微分的概念,了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

理解并会应用罗尔定理、拉格朗日中值定理,了解柯西中值定理、泰勒公式;熟练掌握用洛必达法则求未定式极 限的方法;掌握利用导数判断函数单调性的方法,会用单调性证明不等式;理解函数极值的概念,掌握求函数的极值与、最小值的方法,并会求解简单的应用问题;会判断平面曲线的凹凸性,会求平面曲线的拐点;会求平面曲线的水平、铅直渐近线。

理解原函数和不定积分的概念;掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法;会求有理函数、三角函数有理式及简单无理函数的积分;理解积分上限的函数,会求它的导数,掌握牛顿一莱布尼茨公式;掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功);了解广义积分的概念,会计算广义积分。

3、多元函数微积分

考试内容

(1)多元函数的概念,二元函数的几何意义;二元函数的极 限和连续性;偏导数和全微分,二元函数可微性、偏导数存在性、连续性之间的关系;复合函数和隐函数的求导法,二阶偏导数,二元函数的极值。

(2)二重积分的概念与性质,二重积分的几何意义;二重积分的计算。

考试要求

了解多元函数的概念,了解二元函数的几何意义;了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数;了解多元函数极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会求简单多元函数的值和最小值,会求解一些简单的应用题;了解二重积分的概念与基本性质,掌握二重积分(直角坐标、极坐标)的计算方法,会交换积分次序。

4、无穷级数

考试内容

常数项级数的收敛与发散的概念,收敛级数的和的概念,级数的基本性质与收敛的必要条件,几何级数与p级数及其收敛性,正项级数收敛性的判别法,交错级数与莱布尼茨定理,任意项级数的收敛与条件收敛,函数项级数的收敛域与和函数的概念,幂级数及其收敛半径、收敛区间(指开区间)和收敛域,幂级数的和函数,幂级数在其收敛区间内的基本性质,简单幂级数的和函数的求法 初等函数的幂级数展开式。

考试要求

理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件;掌握几何级数与p级数的收敛与发散的条件;掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法;掌握交错级数的莱布尼茨判别法;了解任意项级数收敛与条件收敛的概念以及收敛与收敛的关系。

了解函数项级数的收敛域及和函数的概念;理解幂级数收敛半径的概念、并掌握幂级数的收敛半径、收敛区间及收敛域的求法;了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和;了解函数展开为泰勒级数的充分必要条件;掌握ex,sinx,cosx,ln(1+x)及(1+x)n的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数。

5、常微分方程

考试内容

常微分方程的基本概念;变量可分离的微分方程,齐次微分方程,一阶线性微分方程,可降阶的高阶微分方程;线性微分方程解的性质及解的结构定理;二阶常系数齐次线性微分方程, 高于二阶的某些常系数齐次线性微分方程,简单的二阶常系数非齐次线性微分方程。

考试要求

了解微分方程及其解、阶、通解、初始条件和特解等概念;掌握变量可分离的方程及一阶线性微分方程的解法,会解齐次微分方程;理解二阶线性微分方程解的性质及解的结构定理;掌握二阶常系数齐次线性微分方程的解法;会解自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积的二阶常系数非齐次线性微分方程。

三、参考书目

[1]同济大学数学系编.高等数学(第六版).高等教育出版社,2007

以上关于湖南师范大学部分考试科目2020考试大纲的详细内容要求,相关专业考生请参照2020考试大纲认真完成专业课的复习。更多关于2020考研资讯信息,可到文都考研网查看。

【特别推荐】

"机"不可失:文都2020考研考前预测峰会,邀你同行

文都教育 各科目2020考研真题答案及解析汇总(预测)