同学们,本篇文章文都考研将整理关于2020考研数学考前复习:矩阵相似对角化考试要点的内容,希望同学们能够认真阅读以下内容,沉着冷静,认真答题。下面就一起来看看具体内容吧。

矩阵的相似对角化是考研的重要考点,该部分内容既可以出大题,也可以出小题。所以同学们必须学会如何判断一个矩阵可对角化,现把该部分的知识点总结如下:

一般方阵的相似对角化理论

这里要求掌握一般矩阵相似对角化的条件,会判断给定的矩阵是否可以相似对角化,另外还要会矩阵相似对角化的计算问题,会求可逆阵以及对角阵。事实上,矩阵相似对角化之后还有一些应用,主要体现在矩阵行列式的计算或者求矩阵的方幂上,这些应用在历年真题中都有不同的体现。

1、判断方阵是否可相似对角化的条件:

(1)充要条件:An可相似对角化的充要条件是:An有n个线性无关的特征向量;

(2)充要条件的另一种形式:An可相似对角化的充要条件是:An的k重特征值满足n-r(λE-A)=k

(3)充分条件:如果An的n个特征值两两不同,那么An一定可以相似对角化;

(4)充分条件:如果An是实对称矩阵,那么An一定可以相似对角化。【注】分析方阵是否可以相似对角化,关键是看线性无关的特征向量的个数,而求特征向量之前,必须先求出特征值。

2、求方阵的特征值:

(1)具体矩阵的特征值:这里的难点在于特征行列式的计算:方法是先利用行列式的性质在行列式中制造出两个0,然后利用行列式的展开定理计算;

(2)抽象矩阵的特征值:抽象矩阵的特征值,往往要根据题中条件构造特征值的定义式来求,灵活性较大。

实对称矩阵的相似对角化理论

其实质还是矩阵的相似对角化问题,与一般方阵不同的是求得的可逆阵为正交阵。这里要求大家除了掌握实对称矩阵的正交相似对角化外,还要掌握实对称矩阵的特征值与特征向量的性质,在考试的时候会经常用到这些考点的。

这块的知识出题比较灵活,可直接出题,即给定一个实对称矩阵A,让求正交阵使得该矩阵正交相似于对角阵;也可以根据矩阵A的特征值、特征向量来确定矩阵A中的参数或者确定矩阵A;另外由于实对称矩阵不同特征值的特征向量是相互正交的,这样还可以由已知特征值的特征向量确定出对应的特征向量,从而确定出矩阵A。

希望以上关于2020考研数学考前复习:矩阵相似对角化考试要点内容可以为同学们提供帮助,小编会不断更新2020考研数学备考知识,欢迎广大考生持续关注!预祝广大考生2020考研成功!

【特别推荐】

文都考研 各科目2020考研真题答案及解析汇总

【点击领取课程】文都2020考研真题解析暨2021考研备考指导峰会