考研数学:计算中的度问题
在 考研数学中,的计算是一个重要考点,在计算时常常需要作等价代换,等价代换是计算的一个重要方法,但很多同学作等价代换时往往忽略了一个问题——等价代换的度问题,结果导致计算错误,这个问题一般出现在分式的计算中。为了使大家避免犯这种错误,下面文都网校的蔡老师对这个问题做一些分析,供大家参考。
计算中的度问题
度问题是指:在计算时,若作等价无穷小代换,会涉及到无穷小的阶数,如果无穷小的阶数不够,则可能导致计算错误。
1)度问题主要出现在分式的计算中:如果分子包含加减运算,对分子作等价代换时,用到的无穷小的阶数必须达到分母的阶数,同样,对分母作等价代换时也是如此。
2)对于不是分式的计算问题,如果包含加减运算,则相加减的项作等价代换时,也要使其度(阶数)一致。

以上是 考研数学中关于计算,如果作等价代换应该注意的一个重要问题,供考生们参考。在以后的时间里,文都网校的蔡老师还会陆续向考生们介绍考研数学中其它重要考点和重要题型的分析和解题方法,希望各位考生留意查看,并祝各位学子在考研中取得佳绩。
【相关推荐】
2015考研真题答案解析专题(考后及时发布)
考研资料
2015考研数学真题答案及解析汇总
2015考研英语(一)真题答案及解析汇总
2015考研英语(二)真题答案及解析汇总
2015考研政治真题答案及解析汇总
全国各高校2015考研成绩查询时间汇总
文都第十九届2016'考研万人公益讲座视频回放汇总
【版权声明】
本文版权属本网所有,任何媒体、网站或个人未经本网协议不得转载、链接、转贴或以其他方式复制发表。已经本站协议的媒体、网站,在下载使用时必须注明“稿件来源:文都教育”,违者本站将依法追究责任。
